LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - MATHEMATICS

THIRD SEMESTER - NOVEMBER 2011

MT 3203/MT 3204-BUSINESS MATHEMATICS

Date: 12-11-2011
Time : 1:00-4:00

PART A

Answer ALL the questions

1. Define total revenue function.
2. The marginal cost function of a product is given by $\frac{d c}{d q}=100-10 q+0.1 q^{2}$, where q is the output. Obtain the total cost function of the firm under the assumption that its fixed cost is Rs. 500 .
3. Find the differential coefficient of $\frac{x^{2}-1}{x^{2}+1}$ with respect to x.
4. Define the price elasticity of demand.
5. Evaluate $\int x e^{x} d x$
6. Prove that $\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x=\int_{a}^{b} f(x) d x$.
7. If $A=\left(\begin{array}{ll}4 & 1 \\ 2 & 3\end{array}\right)$, find A^{2}.
8. Find the rank of $A=\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 5 & 7\end{array}\right)$
9. If $\frac{x+1}{(x-1)(2 x+1)}=\frac{A}{x-1}+\frac{B}{2 x+1}$ then find A and B.
10. Define objective function.

PART B

Answer any FIVE from the following

11. The total cost C for output x is given by $C=\frac{2}{3} x+\frac{35}{2}$. Find (i) Cost when output is 4 units (ii) Average cost when output is 10 units (iii) Marginal cost when output is 3 units.
12. If AR and MR denote the average and marginal revenue at any output, show that elasticity of demand is equal to $\frac{A R}{A R-M R}$. Verify this for the linear demand law $p=a+b x$.
13. If $y=x^{x^{x}}$, find $\frac{d y}{d x}$.
14. Investigate the maxima and minima of the function $2 x^{3}+3 x^{2}-36 x+10$.
15. Integrate $\frac{x^{5}}{\left(x^{2}+1\right)^{5}}$ with respect to x.
16. If $A=\left(\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right)$ show that $A^{2}=2 A$ and $A^{3}=4 A$.
17. Find the adjoint of the matrix $A=\left(\begin{array}{ccc}1 & 4 & 5 \\ 3 & 2 & 6 \\ 0 & 1 & -3\end{array}\right)$.
18. Resolve the following into partial fractions: $\frac{x^{2}+1}{(x-3)(x-1)^{2}}$.

PART C

Answer any TWO from the following

19. (a) If the marginal revenue function for output x is given by $R_{m}=\frac{6}{(x+2)^{2}}+5$, find the total revenue by integration. Also deduce the demand function.
(b) Let the cost function of a firm is given by the following equation:
$C=300 x-10 x^{2}+\frac{1}{3} x^{3}$, where C stands for cost and x for output.
Find the output at which (i) Marginal cost is minimum.
(ii) Average cost is minimum.
(iii) Average cost is equal to Marginal cost.
20. (a) If $y=\left(x+\sqrt{1+x^{2}}\right)^{m}$, show that $\left(1+x^{2}\right) y_{2}+x y_{1}=m^{2} y$.
(b) Find the elasticities of demand and supply at equilibrium price for demand function $p=\sqrt{100-x^{2}}$ and supply function $x=2 p-10$, where p is price and x is quantity.
21. (a) Integrate $\frac{x+5}{(x+1)(x+2)^{2}}$ with respect to x.
(b) Evaluate $\int x^{2} e^{3 x} d x$.
22. (a) Solve the equations $5 x-6 y+4 z=15 ; 7 x+4 y-3 z=19 ; 2 x+y+6 z=46$ by inverse matrix method.
(b) Solve the following linear programming problem graphically:

$$
\begin{array}{r}
\text { Maximize } Z=2 x_{1}+5 x_{2} \\
\text { Subject to } x_{1}+x_{2} \leq 24 \\
\\
3 x_{1}+x_{2} \leq 21 \\
 \tag{12+8}\\
x_{1}+x_{2} \leq 9 \\
\\
x_{1}, x_{2} \geq 0 .
\end{array}
$$

